Sains Malaysiana 53(10)(2024): 3487-3497

http://doi.org/10.17576/jsm-2024-5310-21

 

Automatic Algorithm Applied for Calculating Thermal Conductivity by Transient Plane Source Method

 (Algoritma Automatik Digunakan untuk Menghitung Kekonduksian Terma melalui Kaedah Sumber Satah Fana)

 

ZHIJIE JIA1,2, LIPING YANG2,3, CHENGCHENG CAO2, HUIDONG LI2, CAIYUN LUO2, YE TAO2, QIU ZHONG2, ZIJUN XU2, ZEZHONG CHEN1,*

 

1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2Inorganic Materials Analysis and Testing Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

3State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

 

Received: 14 March 2024/Accepted: 13 August 2024

 

Abstract

As a thermal conductivity measurement method, Transient Plane Source (TPS) method has gained much popularity because of its broad applicability, short measurement times, high precision and simple sample preparation. However, the accuracy of thermal conductivity calculations based on temperature rise data is often hindered by factors such as probe thickness, contact thermal resistance, and input power. Currently, there is no standardized criteria for selecting effective temperature rise data for thermal conductivity calculation. Consequently, the accuracy of results are limited by the operator's understanding of the TPS methods, and repeatability of the results is often poor. To address this issue, an automatic algorithm based on the international standard (ISO22007-2:2008) is proposed in this paper. By applying this algorithm to the measurement of different materials, it has been demonstrated that the proposed algorithm can produce more precise and consistent results than the conventional method. Additionally, the integration of the time window function , typically utilized solely for result validation in conventional methods, further enhances the objectivity and reproducibility of the results obtained by the automatic algorithm.

 

Keywords: Linear regression analysis; thermal conductivity; the effective measurement interval; transient plane source method

 

Abstrak

Sebagai kaedah pengukuran kekonduksian terma, kaedah Sumber Satah Fana (TPS) telah mendapat populariti kerana kebolehgunaannya yang luas, masa pengukuran yang singkat, ketepatan tinggi dan penyediaan sampel yang mudah. Walau bagaimanapun, ketepatan pengiraan kekonduksian terma berdasarkan data kenaikan suhu sering dihalang oleh faktor seperti ketebalan prob, rintangan terma sentuhan dan kuasa input. Pada masa ini, tiada kriteria piawai untuk memilih data kenaikan suhu yang berkesan untuk pengiraan kekonduksian terma. Akibatnya, ketepatan keputusan dihadkan oleh pemahaman pengendali tentang kaedah TPS, dan kebolehulangan keputusan selalunya lemah. Untuk menangani isu ini, algoritma automatik berdasarkan piawaian antarabangsa (ISO22007-2:2008) dicadangkan dalam kertas ini. Dengan menggunakan algoritma ini untuk pengukuran bahan yang berbeza, ia telah menunjukkan bahawa algoritma yang dicadangkan boleh menghasilkan keputusan yang lebih tepat dan tekal berbanding kaedah konvensional. Selain itu, penyepaduan fungsi tetingkap masa , biasanya digunakan semata-mata untuk pengesahan keputusan dalam kaedah konvensional, meningkatkan lagi objektiviti dan kebolehulangan hasil yang diperoleh oleh algoritma automatik.

 

Kata kunci: Analisis regresi linear; kaedah sumber satah fana; kekonduksian terma; selang pengukuran berkesan

 

REFERENCES

Ai, Q., Hu, Z-W., Liu, M., Xia, X-L. & Xie, M. 2016. Influence of sensor orientations on the thermal conductivity measurements of liquids by transient hot disk technique. Journal of Thermal Analysis and Calorimetry 128: 289-300.

Almanza, O., Rodríguez‐Pérez, M.A. & De Saja, J.A. 2004. Applicability of the transient plane source method to measure the thermal conductivity of low‐density polyethylene foams. Journal of Polymer Science Part B: Polymer Physics 42(7): 1226-1234.

Assael, M.J., Antoniadis, K.D. & Wakeham, W.A. 2010. Historical evolution of the transient hot-wire technique. International Journal of Thermophysics 31(6): 1051-1072.

Assael, M.J., Antoniadis, K.D. & Tzetzis, D. 2008. The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes. Composites Science and Technology 68(15-16): 3178-3183.

Assael, M.J., Dix, M., Gialou, K., Vozar, L. & Wakeham, W.A. 2002. Application of the transient hot-wire technique to the measurement of the thermal conductivity of solids. International Journal of Thermophysics 23(3): 615-633.

Bohac, V., Gustavsson, M.K., Kubicar, L. & Gustafsson, S.E. 2000. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Review of Scientific Instruments 71(6): 2452-2455.

Cahill, D.G. 1990. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Review of Scientific Instruments 61(2): 802-808.

Elkholy, A., Sadek, H. & Kempers, R. 2019. An improved transient plane source technique and methodology for measuring the thermal properties of anisotropic materials. International Journal of Thermal Sciences 135: 362-374.

Gustafsson, S.E. 1991. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments 62(3): 797-804.

Gustavsson, M., Karawacki, E. & Gustafsson, S.E. 1994. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Review of Scientific Instruments 65(12): 3856-3859.

Huang, L-P. 2007. Verification of the measurement accuracy and the test range of thermophysical properties of transient plane source (TPS) method. Journal of Astronautic Metrology 26(4): 25-29.

Huang, L. & Liu, L-S. 2009. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. Journal of Food Engineering 95(1): 179-185.

ISO 2008 Plastics - determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method ISO 22007-2 (Geneva: ISO).

Kim, K., Lee, J. & Koo, J. 2019. Automated thermal conductivity measurement algorithm for the transient hot wire method. Journal of Mechanical Science and Technology 33(6): 3001-3009.

Li, Y., Shi, C., Liu, J., Liu, E., Shao, J., Chen, Z., Dorantes-Gonzalez, D.J. & Hu. X. 2014. Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences. Measurement Science and Technology 25: 015006.

Lian, T-W., Kondo, A., Akoshima, M., Abe, H., Ohmura, T., Tuan, W-H. & Naito, M. 2016. Rapid thermal conductivity measurement of porous thermal insulation material by laser flash method. Advanced Powder Technology 27(3): 882-885.

Ma, A., Cai, C., Yang, J. & Zhou, T. 2021. Measuring thermophysical properties of building insulation materials using transient plane heat source method. Energy and Buildings 240: 110819.

Malinarič, S. & Dieška, P. 2015. Concentric circular strips model of the transient plane source-sensor. International Journal of Thermophysics 36(4): 692-700.

Mo, S., Hu, P., Cao, J., Chen, Z., Fan, H. & Yu, F. 2006. Effective thermal conductivity of moist porous sintered nickel material. International Journal of Thermophysics 27(1): 304-313.

Nagai, H., Mamiya, M. & Okutani, T. 2007. Thermal conductivity measurement of molten indium antimonide using hot-disk method in short-duration microgravity. Japanese Journal of Applied Physics 46(12): 7920-7924.

Wang, H., Ihms, D.W., Brandenburg, S.D. & Salvador, J.R. 2019. Thermal conductivity of thermal interface materials evaluated by a transient plane source method. Journal of Electronic Materials 48(7): 4697-4705.

Warzoha, R.J. & Fleischer, A.S. 2014a. Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints." International Journal of Heat and Mass Transfer 71: 779-789.

Warzoha, R.J. & Fleischer, A.S. 2014b. Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology. International Journal of Heat and Mass Transfer 71: 790-807.

Xamán, J., Lira, L. & Arce, J. 2009. Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity. Applied Thermal Engineering 29(4): 617-623.

Zhang, H., Li, Y-M. & Tao, W-Q. 2017. Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method. International Journal of Heat and Mass Transfer 108: 1634-1644.

Zhang, H., Jin, Y., Gu, W., Li, Z.Y. & Tao, W.Q. 2013. A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Progress in Computational Fluid Dynamics 13(3-4): 191-201.

Zhao, W., Yang, Y., Bao, Z., Yan, D. & Zhu, Z. 2020. Methods for measuring the effective thermal conductivity of metal hydride beds: A review. International Journal of Hydrogen Energy 45(11): 6680-6700.

Zheng, Q., Kaur, S., Dames, C. & Prasher, R.S. 2020. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. International Journal of Heat and Mass Transfer 151: 119331.

 

*Corresponding author; email: zzhchen@usst.edu.cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next