Sains Malaysiana 53(10)(2024): 3487-3497
http://doi.org/10.17576/jsm-2024-5310-21
Automatic
Algorithm Applied for Calculating Thermal Conductivity by Transient Plane
Source Method
(Algoritma Automatik Digunakan untuk Menghitung Kekonduksian Terma melalui Kaedah Sumber Satah Fana)
ZHIJIE
JIA1,2, LIPING YANG2,3, CHENGCHENG CAO2,
HUIDONG LI2, CAIYUN LUO2, YE TAO2, QIU ZHONG2,
ZIJUN XU2, ZEZHONG CHEN1,*
1School of Materials Science and Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
2Inorganic Materials Analysis and Testing
Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai
200050, China
3State Key Laboratory of High-Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese
Academy of Sciences, Shanghai 200050, China
Received: 14 March 2024/Accepted: 13 August 2024
Abstract
As a thermal conductivity measurement method,
Transient Plane Source (TPS) method has gained much popularity because of its
broad applicability, short measurement times, high precision and simple sample
preparation. However, the accuracy of thermal
conductivity calculations based on temperature rise data is often hindered by
factors such as probe thickness, contact thermal resistance, and input power.
Currently, there is no standardized criteria for selecting effective
temperature rise data for thermal conductivity calculation. Consequently, the accuracy of results are limited by the operator's
understanding of the TPS methods, and repeatability of the results is often
poor. To address this issue, an automatic algorithm based on the international
standard (ISO22007-2:2008) is proposed in this paper. By applying this algorithm
to the measurement of different materials, it has been demonstrated that the
proposed algorithm can produce more precise and consistent results than the
conventional method. Additionally, the
integration of the time window function
, typically
utilized solely for result validation in conventional methods, further enhances
the objectivity and reproducibility of the results obtained by the automatic
algorithm.
Keywords: Linear regression analysis; thermal conductivity; the
effective measurement interval; transient plane source method
Abstrak
Sebagai kaedah pengukuran kekonduksian terma, kaedah Sumber Satah Fana (TPS) telah mendapat populariti kerana kebolehgunaannya yang luas, masa pengukuran yang singkat, ketepatan tinggi dan penyediaan sampel yang mudah. Walau bagaimanapun, ketepatan pengiraan kekonduksian terma berdasarkan data kenaikan suhu sering dihalang oleh faktor seperti ketebalan prob, rintangan terma sentuhan dan kuasa input. Pada masa ini, tiada kriteria piawai untuk memilih data kenaikan suhu yang berkesan untuk pengiraan kekonduksian terma. Akibatnya, ketepatan keputusan dihadkan oleh pemahaman pengendali tentang kaedah TPS, dan kebolehulangan keputusan selalunya lemah. Untuk menangani isu ini, algoritma automatik berdasarkan piawaian antarabangsa (ISO22007-2:2008) dicadangkan dalam kertas ini. Dengan menggunakan algoritma ini untuk pengukuran bahan yang berbeza, ia telah menunjukkan bahawa algoritma yang dicadangkan boleh menghasilkan keputusan yang lebih tepat dan tekal berbanding kaedah konvensional. Selain itu, penyepaduan fungsi tetingkap masa
, biasanya digunakan semata-mata untuk pengesahan keputusan dalam kaedah konvensional, meningkatkan lagi objektiviti dan kebolehulangan hasil yang diperoleh oleh algoritma automatik.
Kata kunci: Analisis regresi linear; kaedah sumber satah fana; kekonduksian terma; selang pengukuran berkesan
REFERENCES
Ai, Q., Hu, Z-W., Liu, M., Xia, X-L. & Xie, M. 2016. Influence of
sensor orientations on the thermal conductivity measurements of liquids by
transient hot disk technique. Journal of
Thermal Analysis and Calorimetry 128: 289-300.
Almanza, O., Rodríguez‐Pérez, M.A. & De Saja, J.A. 2004.
Applicability of the transient plane source method to measure the thermal
conductivity of low‐density polyethylene foams. Journal of Polymer Science Part B: Polymer Physics 42(7):
1226-1234.
Assael, M.J., Antoniadis, K.D. & Wakeham, W.A. 2010. Historical
evolution of the transient hot-wire technique. International Journal of Thermophysics 31(6): 1051-1072.
Assael, M.J., Antoniadis, K.D. & Tzetzis, D.
2008. The use of the transient hot-wire technique for measurement of the
thermal conductivity of an epoxy-resin reinforced with glass fibres and/or
carbon multi-walled nanotubes. Composites
Science and Technology 68(15-16): 3178-3183.
Assael, M.J., Dix, M., Gialou, K., Vozar, L. & Wakeham, W.A. 2002.
Application of the transient hot-wire technique to the measurement of the
thermal conductivity of solids. International
Journal of Thermophysics 23(3): 615-633.
Bohac, V., Gustavsson, M.K., Kubicar, L. & Gustafsson, S.E. 2000.
Parameter estimations for measurements of thermal transport properties with the
hot disk thermal constants analyzer. Review
of Scientific Instruments 71(6): 2452-2455.
Cahill, D.G. 1990. Thermal conductivity measurement from 30 to 750 K:
the 3ω method. Review of Scientific
Instruments 61(2): 802-808.
Elkholy, A., Sadek, H. & Kempers, R. 2019. An improved transient
plane source technique and methodology for measuring the thermal properties of
anisotropic materials. International
Journal of Thermal Sciences 135: 362-374.
Gustafsson, S.E. 1991. Transient plane source techniques for thermal
conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments 62(3):
797-804.
Gustavsson, M., Karawacki, E. & Gustafsson,
S.E. 1994. Thermal conductivity, thermal diffusivity, and specific heat of thin
samples from transient measurements with hot disk sensors. Review of Scientific Instruments 65(12): 3856-3859.
Huang, L-P. 2007. Verification of the measurement accuracy and the test
range of thermophysical properties of transient plane source (TPS) method. Journal of Astronautic Metrology 26(4):
25-29.
Huang, L. & Liu, L-S. 2009. Simultaneous
determination of thermal conductivity and thermal diffusivity of food and
agricultural materials using a transient plane-source method. Journal of Food Engineering 95(1):
179-185.
ISO 2008 Plastics - determination of thermal
conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot
disc) method ISO 22007-2 (Geneva: ISO).
Kim, K., Lee, J. & Koo, J. 2019. Automated
thermal conductivity measurement algorithm for the transient hot wire method. Journal of Mechanical Science and Technology 33(6): 3001-3009.
Li, Y., Shi, C., Liu, J., Liu, E., Shao, J., Chen,
Z., Dorantes-Gonzalez, D.J. & Hu. X. 2014. Improving the accuracy of the
transient plane source method by correcting probe heat capacity and resistance
influences. Measurement Science and
Technology 25: 015006.
Lian, T-W., Kondo, A., Akoshima, M., Abe, H.,
Ohmura, T., Tuan, W-H. & Naito, M. 2016. Rapid thermal conductivity
measurement of porous thermal insulation material by laser flash method. Advanced Powder Technology 27(3):
882-885.
Ma, A., Cai, C., Yang, J. & Zhou, T. 2021.
Measuring thermophysical properties of building insulation materials using
transient plane heat source method. Energy
and Buildings 240: 110819.
Malinarič, S. & Dieška, P. 2015.
Concentric circular strips model of the transient plane source-sensor. International Journal of Thermophysics 36(4): 692-700.
Mo, S., Hu, P., Cao, J., Chen, Z., Fan, H. &
Yu, F. 2006. Effective thermal conductivity of moist porous sintered nickel
material. International Journal of
Thermophysics 27(1): 304-313.
Nagai, H., Mamiya, M. & Okutani, T. 2007.
Thermal conductivity measurement of molten indium
antimonide using hot-disk method in short-duration microgravity. Japanese Journal of Applied Physics 46(12): 7920-7924.
Wang, H., Ihms, D.W., Brandenburg, S.D. &
Salvador, J.R. 2019. Thermal conductivity of thermal interface materials
evaluated by a transient plane source method. Journal of Electronic Materials 48(7): 4697-4705.
Warzoha, R.J. & Fleischer, A.S. 2014a.
Determining the thermal conductivity of liquids using the transient hot disk
method. Part I: Establishing transient thermal-fluid constraints." International Journal of Heat and Mass
Transfer 71: 779-789.
Warzoha, R.J. & Fleischer, A.S. 2014b.
Determining the thermal conductivity of liquids using the transient hot disk
method. Part II: Establishing an accurate and repeatable experimental
methodology. International Journal of
Heat and Mass Transfer 71: 790-807.
Xamán, J., Lira, L. & Arce, J. 2009. Analysis
of the temperature distribution in a guarded hot plate apparatus for measuring
thermal conductivity. Applied Thermal
Engineering 29(4): 617-623.
Zhang, H., Li, Y-M. & Tao, W-Q. 2017. Theoretical accuracy of
anisotropic thermal conductivity determined by transient plane source method. International Journal of Heat and Mass
Transfer 108: 1634-1644.
Zhang, H., Jin, Y., Gu, W., Li, Z.Y. & Tao,
W.Q. 2013. A numerical study on the influence of insulating layer of the hot
disk sensor on the thermal conductivity measuring accuracy. Progress in Computational Fluid Dynamics 13(3-4): 191-201.
Zhao, W., Yang, Y., Bao, Z., Yan, D. & Zhu, Z.
2020. Methods for measuring the effective thermal conductivity of metal hydride
beds: A review. International Journal of
Hydrogen Energy 45(11): 6680-6700.
Zheng, Q., Kaur, S., Dames, C. & Prasher, R.S.
2020. Analysis and improvement of the hot disk transient plane source method
for low thermal conductivity materials. International
Journal of Heat and Mass Transfer 151: 119331.
*Corresponding author; email: zzhchen@usst.edu.cn